
Journal of Global Optimization 7: 33-50, 1995. 33 
@ 1995 KluwerAcademic Publishers. Printed in the Netherlands. 

S o m e  G e o m e t r i c  R e s u l t s  in S e m i d e f i n i t e  

P r o g r a m m i n g  

MOTAKURI RAMANA* 
Center for Operations Research (RUTCOR), Rutgers University, P O. Box 5062, New Brunswick, 
NJ08903-5062, U.S.A. (email: mramana@rutcor.rutgers.edu) 

and 

A. J. GOLDMAN** 
Mathematical Sciences Department, The Johns Hopkins University, Baltimore, MD 21218-2689, 
U.S.A. 

(Received: 8 August 1994; accepted: 21 February 1995) 

Abstract. The purpose of this paper is to develop certain geometric results concerning the feasible 
regions of Semidefinite Programs, called here Spectrahedra. 

We first develop a characterization for the faces of spectrahedra. More specifically, given a point x 
in a spectrahedron, we derive an expression for the minimal face containing x. Among other things, 
this is shown to yield characterizations for extreme points and extreme rays of spectrahedra. We then 
introduce the notion of an algebraic polar of a spectrahedron, and present its relation to the usual 
geometric polar. 
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1. Introduction and Motivation 

Let S~, 7~ denote respectively, the space of n-by-n real symmetric matrices and the 
cone of n x n positive semidefinite (PSD) matrices. We let 5- denote the Loewner 
partial order induced by P~ on S~, i.e., A _ / 3  i fA - / 3  is positive semidefinite. 

DEFINITION 1. A Spectrahedron is a closed convex set of the following type: 

c = {~10(~) >- o}, 

where 

? n  

Q(x) = Q0 + Z x~Q~ 
i= l  

with Qi E S~ Vi = 0 , . . . , m .  
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Since the smallest-eigenvalue function is concave, it follows that G is a closed 
convex set. In this paper, we present some geometrical results concerning spectra- 
hedra. 

Spectrahedra are nothing but the feasible regions of Semidefinite Programs 
(SDP) [1, 2]. The name Spectrahedron can perhaps be justified as follows: the 
definition of this class of sets involves the spectrum, and they bear a resemblance 
to polyhedra. Indeed, spectrahedra may be considered "next natural successors" to 
polyhedra, as one moves beyond linear constraints in optimization theory. 

1.1. BACKGROUND 

Historically, semidefinite programming has been studied in more general contexts 
such as convex and cone programming (see [6], [8], [9] and [32]). See also [11] 
and [21]. Further references can be found in [2]. 

However, the more recent surge of interest in SDP was primarily inspired by the 
work of [14] (see [15], Chapter 9). In this work, the authors associate with every 
graph G, a convex set denoted by TH(G), and show that when G is perfect, this set 
equals the stable set polytope. Then they demonstrate that one can optimize over 
TH(G) in polynomial time, and hence the stable set problem (along with many 
other related problems) can be solved in polynomial time for perfect graphs. (In 
our language, the convex set TH(G) is the projection of certain spectrahedron onto 
a subspace.) 

The algorithms of [ 14] employ the ellipsoid method, and are not considered to be 
efficient in practice. In his Ph.D. work, Farid Alizadeh showed that one can extend, 
in an almost mechanical fashion, many of the known interior point methods for LP 
into polynomial time algorithms for solving SDPs approximately. Independently 
of Alizadeh's work, Nesterov and Nemirovskii [20] developed efficient interior 
point methods for a wider class of convex programs, by employing self-concordant 
barrier functions. We refer the reader to [2] and [31] for an account of several 
algorithmic approaches to SDP as well as its applications. 

A very recent result of Goemans and Williamson [12] showing that one can use 
the solution obtained from a semidefinite relaxation to obtain a 0.878-approximation 
algorithm 1 for the Max-Cut problem, gives further impetus to Semidefinite Pro- 
gramming. Their result employs an ingenious randomized rounding scheme. This 
result has inspired other recent results on the application of SDP to combinatorial 
optimization problems. 

A complete duality theory has recently been developed in [26]. The resulting 
dual, called the Extended Lagrange-Slater Dual (ELSD), is an explicit polyno- 
mial size semidefinite program, which enjoys zero-duality gap, and yields several 
complexity results for semidefinite programming. The derivation of ELSD arose 
as an extension of the analysis of polars of spectrahedra developed in Section 3 (in 
particular, proof of Theorem 2) of the current paper. 
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In [18], Laurent andPoljak investigate certain geometric features of the set of 
correlation matrices, which form a special class of spectrahedra, defined by: 

= { s i x  7 n, = 1 Vi}. 

This set, referred to as an Elliptope by the authors, is precisely the feasible region of 
the SDP employed by Goemans and Williamson. In [24] and [25], Pataki developed 
certain results for the faces of spectrahedra and applied them to solve SDPs in the 
framework of Semi-Infinite Linear Programming. 

1.2. RELATIONS TO MULTIQUADRATIC PROGRAMMING 

The Multiquadratic Programming Problem (MQP) is the problem of minimizing 
a quadratic objective function subject to quadratic equality and inequality con- 
straints. Our interest in spectrahedra and semidefinite programming was originally 
motivated by their relation to MQP. Essentially, SDP arises as a relaxation of MQP, 
which we explain as follows. 

Consider the MQP min{g(x ) [ f ( x )  = 0}, where g(x)  = xTQo x + bTx and 
fi (x) = xTQi  (x) + bTx + ci, Vi = 1 , . . . ,  m. Now define G(U, x) = U.  Qo + bTx 
and Fi(U, x) = U.  Qi + B T x  + c~, Vi = 1 , . . . ,  m, where U is a symmetric matrix 
variable. Clearly, the MQP is equivalent to min{G(U, x)IF(U,  x) = 0, U - xx  T = 
0}. The MQP is NP-Hard, and hence it is natural to consider its relaxations. We 
consider, in particular, relaxing U - xx  T = 0 to U - xx  T h O, or equivalently, 

X T 1 - 

The relaxation thus obtained is a semidefinite program, and is called the Image 
Convexification Relaxation (ICR) as one can show that [27, 29] 

Conv( f (9~n) )  = {F(U, x ) l U -  xx  T >'- 0}. 

The ICR is closely related to the N+ operator defined in [ 19]. In particular, the 
semidefinite relaxation of the stable set problem as considered by (see [15] and 
[19]) as well as that of the Max-Cut problem as in [12] are precisely the ICRs of 

2 '7'/} in the case the corresponding MQPs: max{eTxlx ix j  = 0 V(i, j )  E E,  xi = xi 
of the former, and max{x TQxlx 2 = 1 Vi} for the latter. 

It is NP-Hard to check whether the ICR of a given MQP is exact, i.e., whether 
the optimum value of the semidefinite relaxation is equal to that of the MQP; this 
was shown for the special case of Max-Cut problem in [ 10] and [ 18]. The problem 
of determining whether the ICR is exact for every c (constant term of f ( x ) )  reduces 
essentially to checking whether the image of a quadratic map is convex. In [29], 
it was shown that this latter problem is also NP-Hard. However, the problem of 
checking if the image of every subspace under a given quadratic map is convex 
can be accomplished in polynomial time. 
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On the other hand, in order to solve the original MQP exactly, one needs to 
maintain U - xx  T = 0. One way of doing so is to require that there exist y such 
that 

x] 
x T 1 = yyT. 

Such optimization problems are called Unary Programs in [27] and [28], wherein, 
certain valid cuts for the feasible regions of Unary programs were developed. These 
cuts, similar in flavor to the Gomory/Chvfital cuts for Integer Programming, are 
based on some eigenvalue inequalities called the Weyl inequalities. 

1.3. NOTATION 

In large part, we will follow the matrix and convex theoretic notations of respec- 
tively, [161 and [30]. 

We denote by -Mm,n, .Mn and 8,~, the spaces of m x n real matrices, n x n real 
matrices, and its subspace of symmetric matrices, respectively. For U E Sn, we 
write U ,':_ 0 (resp. ~-), if U is positive semidefinite (resp. positive definite), i.e. all 
the eigenvalues of U are nonnegative (resp. positive). The inner product on .Mm,n 
(and 8~) is given by: 

A.  B = ~ AijBij. 

Given A E .Mm,r~, B E .Mk,t, their direct sum is the block partitioned (m + 
k) x (n + l) matrix: 

A G B = [ A  0 ]  
0 B  " 

As usual, Diag(v) for v E fit ~ denotes the diagonal matrix formed from v. For any 
R E .hdm,~, Null(R) denotes the null space of R. 

The spectral decomposition of a symmetric matrix A is A = VTDV,  where 
V is an orthogonal matrix (i.e. v T v  = I) of eigenvectors of A, and D is the 
diagonal matrix of the eigenvalues of A, and the spectral radius, denoted by p(A), 
is the largest of the magnitudes of the eigenvalues A. A collection {A1 , . . . ,  Ak } of 
matrices in S~ is said to be simultaneously diagonalizable via congruence, if there 
exists a nonsingular matrix S such that each of the STAiS is diagonal. 

For A, B C fit n, A + B denotes the Minkowski Sum (also called the set sum). 
For A C 9l ~, Cony(A) (resp. Aft(A)) denotes the smallest convex set (resp. affine 
subspace) containing A. The dimension of A is dim(Aft(A)), and B(x, r) is the 
ball of radius r around x. 

Let G C fit ~ be a convex set. The interior and the relative interior of G are 
denoted by Int(G) and ri(G) respectively. The recession cone of G is defned by: 

0+(G) = {v E ~nIVx E G,t >>. O , x + t v  E G}, 
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and its lineal hull (contrast with linear hull) is the subspace 0 + (G) N 0 + ( - G ) .  
A face of a convex set G is a convex subset F such that whenever a, b E G, 

(a, b) A F r 0, we have a, b E F (here, (a, b) denotes the open segment that 
"joins" a and b). Any convex set is the disjoint union of the relative interiors of its 
faces ([30], S 18). In other words, given any z E G, there is a unique face which 
contains z in its relative interior. We call this face the minimal face of z, and denote 
it by FG(Z). A face F of G is said to be exposed, if it is the intersection of some 
hyperplane with G or it is G itself. 

The polar of a convex set G is 

G ~ = {ylyTx < 1 Vx E G}. 

A generic spectrahedron will be denoted by G = {xlQ (x) ~- 0}, corresponding 

to a matrix map Q(x). We will let ~)(x) denote the linear part of Q(x), i.e. 
Q(x) - Qo, and N(x)  stand for the null space Null(Q(x)). At certain places in this 
paper, we will consider Q(x) in its reduced form, which is defined as follows. Let 
VTDIV  be the spectral decomposition of Q0, where D I = D @ 0 and Dii r 0 Vi. 
Then the reduced form is: 

Q'(x) = v T Q ( x ) V =  [ D +  A(x) B(x) T ] 
[ B (x )  C(x )  " 

Here, A(x),  B(x) ,  and C(x) are linear matrix maps of appropriate sizes. In partic- 
ular, when 0 E G, or equivalently Qo ~ 0, then D is positive definite. 

1.4. PRELIMINARIES 

The following well known facts will be used in the paper (the proofs in most part 
can be found in [16] and [30]). 

�9 If U _~ 0, and Uii = 0, then Uij = 0 Vj. 
�9 If A E ,5~ and S E .Mn and nonsingular, then A _~ 0 iff S T A S  ~_ O. (Special 

case of the Sylvester's law of inertia.) 
�9 If A ~ 0 and u E 9l ~, then Au = 0 iff uTAu = O. 
�9 Given a block partitioned matrix 

U =  C ' 

where A and C are square, and A is nonsingular, then the Schur Complement 
of A in U is the matrix S = C - B A - 1 B  r. We have that, if A ~- 0, then 
U ~ Oe:~ S ~- OandU ~ O.~ S ~-O. 

�9 A E ,Sn is PSD i f f A .  B ) 0 for all B ~ 0. 
�9 If A, B ~ 0, then A .  B = 0 iff A B  = 0 (see [2] for a proof). 
�9 If A, B are convex sets, and A C B, then A ~ D B ~ And, if A is a closed 

convex set containing the origin, then A ~176 = A. 
�9 I f G  is acone,  then G ~ = {y]yWx <. 0 Vx E G}. 
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�9 I f K i ,  i = 1 , . . . ,  l are cones, then (K1 + K2 + . . .  + K l )  ~ = n i K  ~ 

Here are some easy observations that one can make about spectrahedra: 
1. Every polyhedron is a spectrahedron: Given P = {xlAx >t b}, take Q(x) = 

Diag(Ax - b). 
2. The intersection of two spectrahedra is another spectrahedron: Take the direct 

sum of the two maps involved. 
3. The property of spectrahedrality is unaltered by bijective affine transformations 

of the space. 
4. A spectrahedron remains unaltered when a nonsingular congruence transfor- 

mation is applied to the matrix map: i.e. if V is a nonsingular matrix, then 
a = {xlVTQ(x)V ~ 0}. 

5. The "complex spectrahedra" are spectrahedra: Let 7-/n denote the complex 
Hermitian space, and Q : 9~ m --+ 7-tn be affine. We can split Q(x) = R(x) + 
iC(x), where R(x) is an affine real symmetric matrix map, and C(x) is an 
affine real skew-symmetric matrix map. Then Q(x) is Hermitian PSD if and 
only if 

JR(x) ] 
R(x) j 0 

and hence we obtain a spectrahedron (in [17], a similar construction is given 
for spectrahedra defined over the quaternion PSD cone). 

6. Convex quadratic inequalities give spectrahedra: Let f(x) = xTLTLx+bTx+ 
c. Then f (x)  << 0 if and only if 

[--(bTx +c) x TLT] 
Lx I ~ O. 

7. If there exists an ~" such that Q(2) >- 0, then Int(G) ~ 0: For x sufficiently close 
to 5z, Q(x) ~- O. The converse is not necessarily true. However, there exists a 
(_polynomial time computable) nonsingular matrix X such that XTQ(x)X = 
Q(x) @ 0, and Int(G) = {zlO(x ) ~ 0} (SS 2.4). 

8. I fQ(x)  is linear, i.e. Q0 = 0, then G is aconvex cone. Again, the converse need 
not hold in general. Interestingly enough, the problem of checking whether a 
quartic function is convex can be reduced to determining whether a spectrahe- 
dron given by a matrix map is conical (SS 2.5). The complexity of the former 
problem is open, and its resolution is considered to be challenging [23]. 

1.5. BRIEF SUMMARY QF THE MAIN RESULTS 

In Section 2, we investigate the structure of the faces of spectrahedra. We derive for 
any given x E G, an expression for the face of FG (x) in terms of the null space map 
Null(Q (x)). This yields a characterization of the faces of a spectrahedron. Also, we 
obtain the facts that the null space is constant over the relative interiors of the faces, 
and that the faces of spectrahedra are always exposed. We specialize the results 
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to obtain characterizations for extreme points and extreme rays of spectrahedra. 
The two issues of when a spectrahedron is full-dimensional or conical are also 
addressed. 

Certain results concerning the polars (denoted by G ~ of spectrahedra are pre- 
sented in Section 3. We define the "algebraic polar" G* of a spectrahedron, and 
show that G ~ = CI(G*). It is then shown that G ~ = G* + (Aft(G)) • Then we 
show that some polyhedral properties such as being closed under polar-taking, do 
not extend to spectrahedra. 

2. Faces of Spectrahedra 

Let us first recap the definition of the face of a convex set. A face of a convex set G 
is a convex subset F such that whenever a, b E G and ta + (1 - t)b E F for some 
0 < t < 1, we have a, b E F .  As already mentioned, every point x of a convex 
set G belongs to the relative interior of a unique face, denoted by FG(x). Notice 
that 

A f f ( F c ( x ) )  --- {x + zlSt > O s . t . x - t z ,  x + tz E G} 

FG(x) = A f f ( F c ( x ) )  M G 

Henceforth, assume that G is a spectrahedron given by: 

G = {xlQ(x)  >- o}. 

2.1. A CHARACTERIZATION OF FACES 

In this subsection, we will give an algebraic description of the faces of G. This 
will then imply a characterization of faces. It will also follow that every face of 
a spectrahedron is exposed. We essentially generalize the following result for the 
faces of the PSD cone (a spectrahedron) which appears in [3]. 

LEMMA 1. I f  W E "Pn, then 

FT~n (W)  = {U ~_ OINull(V) ~ Null(W)}.  

For any x E fit ~ ,  let Q(x) -- Q(x) - Qo and N ( x )  = Null(Q(x)).  
We first prove the following technical lemma. Given A, B E Sn, and a subspace 

S C ff~n we say that"A ___ B o v e r S " , i f u T ( A - B ) u  >>. OVu E S. 

LEMMA 2. Let A, B E "-qn, A ~ O. Then 

A ~ - B ~ - - A  

iff 
(a) A ~_ B ~_ - A  over Null(A) • and 
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(b) Null(B) D Null(A). 
Proof Put N = Null(A).  
Sufficiency. We need to show that 

w T A w  >>. w T B w  >/ - -wTAw Vw E s n. (1) 

Given any w E Yt n, one can write w = u + v for some u E N • and v E N .  
Then w T A w  = uTAu, and by (b), w T B w  = uTBu. This together with (a) proves 
(1). 

Necessity. Suppose that (1) holds. We may put w = tu + v for some arbitrary 
v E N ,  u E 9~ n a n d t  > 0 t o  get 

tZuT Au >>, tZuT Bu  + 2tuT Bv + vT Bv 

>/ --tZuTAu Vu E 9~ n, v E N, t > 0. (2) 

Taking the limit as t goes to 0 in (2), we get vTBv -= 0 Vv G N.  Plugging this into 
(2) and dividing by t yields 

tuT Au ~ tuT Bu  + 2uT Bv >~ --tuT Au. 

Once again taking the limit as t goes to 0, we get 

uT Bv  = 0 Vu E 9~nv E N. 

This implies that By = 0 for all v E N.  Thus (b) holds. Since (a) holds trivially, 
the proof  is complete. [] 

T H E O R E M  1. Let 2, E G and define the affine subspaces: 

S l ( 2 , )  ---- {zIN(z) D N(X)} 

s2(2,) = {zlvrQ(z)v = 0 Vv e N(2 , )} .  

Then the following hold: 
1. Fg(2,)  = Sa(:~) n G = $2(2,) N G 
2. AfJ(Fc(~)) = $1(2,). 

Proof That $1 (X) C~ G = $2(2,) A G is easily verified. The theorem will follow 
if we show the second assertion. For any nonzero y E 9l m, we have: 

2, + y E Aff(Fc(2 , ) )  ~ 3t > 0 such that 2, - ty, 2, + ty E G 

3t > 0 such that Q(2,) _~ tQ(y)  __ -Q(2 , )  

3t > 0 such that 

(a) Q(2,) ,':_ tQ(y)  :'- -Q(2 , )  over N ( x )  • 

(b) Nul l (Q(y))  D N(2,). 

The second bi-implication comes from an application of  Lemma 2. We claim 
that (a) is redundant in the above; given a yP satisfying (b), we will find a t ~ > 0 
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such that (a) is satisfied by y = t'y': If Q(y')  = 0, take y = y' and (a) holds since 
Q(~') ~ 0. Otherwise, (b) implies that Q(:~) r 0, and we choose t' to be Alp, where 
A is the smallest nonzero eigenvalue of Q(~) and p is the spectral radius of Q(y).  
Then, for any unit-vector v �9 N • vTQ(~)v >/A, and IvTQ(y)v] ~< p, and hence 

the stated claim follows. As a result, z �9 Aff(Fc(:~)) i ff  N u l l ( Q ( z -  ~)) D N(~)  
iff N (z) D N (5:), proving the theorem. [] 

The corollary below is an easy consequence of the theorem. 

COROLLARY 1. Let G be a spectrahedron. Then 
1. the null space N ( x ) is constant over the relative interior of any face of G. 
2. every face of G is exposed. 

Proof. Suppose that z E ri(Fc(~)). Then Fc(z)  = Fc(5:), and hence z C 
5:1(50, implying that N(z)  D N(~) .  Similarly N(~)  D N(z) ,  proving the first 
assertion. 

Let us now prove the second assertion assuming that Y: = 0 and Q(z)  is in 
reduced form, i.e. 

Q(x) = [ D + A(x) B(x) T ] 
B(x) C(x) ' 

where C(x) is a k • k (linear) matrix map, and D ~- 0 (A(x) and B(x) are linear 
as well). If k = 0, then 0 is an interior point of G, so Fc(0)  = G, and hence G is 
exposed. Assume that k > 0. By an application of the theorem, we obtain 

S := A f f ( F c ( 0 ) ) =  {xlC(x ) = 0, B(x)  = 0 } .  

Define ai = tr(C~) Vi = 1 , . . . ,  m. We claim that 

Fc(0)  = {x e Cla x = 0}. 

First, suppose that x E G and aTx = 0. Since C(x) h 0 and aTx = tr(C(x)) = O, 
we have that C(x) = 0 and B(x) = 0. Hence x e FG(0). The reverse inclusion 
is easily shown. Therefore, if a # 0, then FG (0) is an exposed face. Suppose now 
that a = 0, implying that, for any x E G, C(x) ~- 0, tr(C(x))  = 0, and thus 
C(x) = 0. We conclude that C(x) = 0 for all x e G. Consequently, B(x) = 0 for 
all x E G, implying that Fc (0) is G itself. 

The proof of the general case follows after an application of a translation that 
sends �9 to the origin followed by a congruence transformation that sends the matrix 
map to the desired form. [] 

The fact that all the faces of spectrahedron are exposed will be used in Section 
2.5 to show that the polars of spectrahedral cones need not be spectrahedral. The 
following is a simple characterization of the faces of G. 
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COROLLARY 2. The faces o f  G are the maximal convex subsets S such that N ( x ) 
is constant over r i (  G). 

2.2. EXTREME POINTS AND RAYS 

Theorem 1 will now be applied to obtain characterizations for the extreme points 
and extreme rays of spectrahedra. Recall that a point Y: is said to be an extreme point 
if there do not exist x, y distinct from ,~ such that �9 = (x + y ) /2 ,  or equivalently, 
Fc (~ )  -- {~}. 

COROLLARY 3. Let G be a spectrahedron as defined above, and suppose that 
E G. Then the fol lowing are equivalent: 

1. ~2 is an extreme point  o f  G. 
2. Yy  E 9~ m, Nu l l (Q(y ) )  D N ( ~ )  ~ y = O. 

z e N ( z )  = 

4. z �9 G, N ( z )  3 N ( ~ )  ~ z = $. 

These last two conditions can be worded as: A point in a spectrahedron is extremal 
if and only if it is maximal w.r.t, the partial order of containment of the null spaces of 
the matrix map (maximality over G or equivalently over the whole space ~m). 

Carrying out a similar exercise yields a characterization for the extreme rays 
of spectrahedral cones. We assume that Q0 = 0. A nonzero vector x in a cone 
G is said to be irreversible, if - x  ~ G, i.e., z is not in the lineal hull of G. An 
irreversible vector is said to be extremal if dim(Aff(Fa(~'))) = 1. 

COROLLARY 4. Let Q0 = 0, and let �9 be an irreversible non-zero vector in the 
spectrahedral cone G. Then the fol lowing are equivalent: 

1. ~ is extremal, or equivalently, d im(Zf f (FG(2)  ) ) = 1. 
2. Nu l l (Q(y ) )  ~ Null(Q(~2)) ~ y E span{E}. 

It is easy to see that the dimensions of the faces of a polyhedron form a contiguous 
string of integers. This does not hold for spectrahedra: It is well known and follows 
easily from Lemma 1 that the faces of 79, have dimensions k (k  -4- 1)/2 for k = 
0 , . . . ,  n, and hence there are "missing" dimensions in between these (triangular) 
integers. 

2.3. COMPUTATIONAL ASPECTS 

Using Theorem 1, one can easily compute a basis for Aff(FG(~)) for any given 
point �9 C G. To see this, suppose that u~, i = 1 , . . . ,  k, span N(~)  = Null(Q(y:)) 
(such a collection can be obtained by performing a Cholesky decomposition of 
Q(~)). Then a basis for the linear subspace 

s = ( u l O ( y ) u j  = 0 v i  = 1, , ,  k}, 



GEOMETRIC RESULTS IN SEMIDEFINITE PROGRAMMING 43 

can be computed by Gaussian elimination. Then Aff(Fa(:~)) = ~ + S. 
Now, suppose that we want to check if .~ is an extreme point of G. Then, define 

the kn T M  matrix 

B ~ �9 . . .  �9 , 

Qluk Qmulr 
By Corollary 3, ~" is an extreme point if and only if B has full column rank. If the 
matrices Qi, i = 0, . . . ,  ra as well as the vector �9 are rational vector, then all of the 
above computations are polynomial time. 

As witnessed in this section, essentially, the null space N(~') takes on the role 
of "the index set of active constraints" for the polyhedral case, which becomes 
a basis at a nondegenerate extreme point. This analogy can perhaps be used to 
develop simplex-like algorithms for Semidefinite Programming. Such an algo- 
rithm might "jump" from one N(~)  to another much like changing bases in linear 
programming. 

2.4. FULL-DIMENSIONAL SPECTRAHEDRA 

As mentioned in the introduction, if there exists an x such that Q(z) ~- O, then 
Int(G) is not empty, but the converse is not necessarily true. However, we can 
"treat" the matrix in a straightforward manner, so that there is an exact correspon- 
dence. 

Let us define the subspace 
? r t  

N = ('] Null(Qi), 
i=0 

and let V be a nonsingular matrix whose first k columns span N.  Note that such a 
V can be computed in polynomial time. We then obtain 

VTQ(x)V = [00 0 ] 
O ( x )  " 

Therefore, G = (x lQ(x)  _ 0}. We now claim that Int(G)is  nonempty if and only 
if there exists an x such that Q(x) ~ 0: Suppose that Int(G) # ~. Let N '  be the 
constant null space (Corollary 1) over the interior. From the block diagonal form, 
it is clear that N ~ 3 N.  Also, 

V u E N '  V x E I n t ( G ) ,  Q(x)u=O. 
Since a linear function vanishes on an open set iff it is identically zero, we conclude 
that N ~ C N,  and hence N ~ = N.  Thus, there exists a point x such that (~(x) ~-- 0. 
Note that the above is a polynomial time process for obtaining (~(x) whenever the 
matrix map Q(x) has rational coefficients (same applies for arbitrary matrix maps 
in the real number model of computation). Hence we have, 
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COROLLARY 5. Let G = {xlO(x) _~ o} and let N be the intersection of the null 
spaces of Qi, i = 0, . . . ,  m. If V is a full rank matrix whose columns span the 
orthogonal complement of N, then 

G =  {x lVTQ(x)V h 0}, and ln t (G)=  {xIVTQ(x)V ~- 0}. 

2.5.  CONICAL SPECTRAHEDRA 

In contrast with the above, where full-dimensionality and its "natural" algebraic 
analog (i.e., that of having an x such that Q(x) ~ 0) are sufficiently close, the same 
is not the case with the conicity of spectrahedra as shown below. 

A convex set is conical if tx E G for every x E G and t /> 0. As noted 
before, if Q0 = 0, then G is conical, and the converse need not hold (take Q(z) = 
Diag ( 1 § x ~, x ~ ), for instance). As before, O (x) will denote the pure-linear part of 
Q(x). We will start by giving simple expressions for the recession cones and lineal 
hulls of spectrahedra. 

Since G = {xl~zTQ,(x)zt ) -uTQo u Vu E 91n}, by a result in ([30], p. 62), 

0+(a)  = {xlur0(x)  0 w e 

LEMMA 3. The recession cone of G is given by {xlQ(x ) h 0}. The lineality space 
of a is {x[Q(x) = 0}. 

Since a closed convex set G is conical if and only if 0 + (G) --- G, a ready application 
of the lemma is the following simple characterization of conical spectrahedra. 

COROLLARY 6. The spectrahedron G = {xlQ(x) ~- o} is conical iff a = 
o}. 

Now consider a matrix map in the following special form: 

Q(x) = [ I + z ( x )  0 ] 
o ' 

where A(x) and C(x) are linear matrix maps, and define the cones 

Kl = {xlA(x) h O}, and K 2 = { x l C ( x  ) ~ 0}. 

COROLLARY 7. l f  Q(x) is of the above form, then G is conical iff Kl D K2 (iff 
G = K2). 

Proof If K1 3 K2, then G = K2, and hence it is conical. Conversely, suppose 
that G is a cone. Then by the above corollary, G = K1 A/t22. Suppose that there 
exists an x E K2 such that A(x) ~ O. For sufficiently small t > O, I + A(tx) ~- O, 
implying tx E G. But since G is assumed to be a cone, t'x E G for all t > 0. This 
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is a contradiction since for sufficiently large t I, I + A (tl x) ~ O. The lemma follows. 
[] 

The problem of checking if a given quartic polynomial is convex is an outstanding 
open problem in complexity theory [23]. In [27], it was shown that the convexity 
problem can be reduced to the problem of checking whether a certain spectrahedral 
cone (given by a linear matrix map) contains the PSD cone. From the corollary, 
this clearly implies that detecting whether a given spectrahedron is a cone is at 
least as hard as the quartic convexity problem. 

3. Polars of Spectrahedra 

The (Geometric) Polar of a convex set S is defined as follows: 

S ~ = {ylyTx <~ 1 Vx ~ S}. 

In this section, we will investigate the relationship between the geometric polar 
of a spectrahedron G given by a matrix map Q(x), and its algebraic counterpart 
defined as follows. Let (~(x) be the linear part of Q(x), and let L : Sn --+ fit TM 

denote the adjoint of this map, i.e. L(U)i = U .  Qi Vi = 1 , . . . ,  m. Then, the 
Algebraic polar of G (with respect to the representation Q(x)) is 

G*[Q(x)] = { - L ( U ) I U  . Qo < 1, U ~_ 0}. 

(Simply denoted by G* whenever confusion is not likely to arise.) We will begin 
by considering the following Primal-Dual pair of semidefinite programs [2]. 

in f{U.  QolU. Qi = -c i  Vi, U ~ 0} (Primal) 

sup{cT xlQ(x) ~ 0} (Dual) 

That G ~ 
above pair: 

G ~ 

D 

D 

D G* follows from the fact that weak duality always holds for the 

{yl sup{SxlQ(x) 0} < 1} 
{y[ inf{U �9 Qo[L(U) -= - y ,  U ~- 0} ~< l} 

{ - L ( U ) ] U  . Qo <~ 1, U ~ O} 
C*. 

The following simple example shows that equality need not hold between these 
two sets. 

EXAMPLE. For the map 

xl x2 ]  
x2 0 
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we have the following: 

a = • { o }  

G ~ = • 

G* = { ( 0 , 0 ) } U { ( x l , x 2 ) l x l  < 0 ,  x2 EYt}. 

Thus G ~ # G*. But, G ~ = CI(G*), and this is always the case as shown in the 
following lemma. 

LEMMA 4. Suppose that 0 E G (i.e. Qo h 0). Then G ~ = CI(G*). 
Proof As already shown, G* C G ~ Since G ~ is always closed, CI(G*) C 

G ~ . 

To show the reverse inclusion, put H = CI(G*) and consider any w E H ~ 
Then, we have 

w T ( - L ( U ) )  ~< 1 whenever U >- 0, U .  Q0 ~< 1. (*) 

W e  claim that Q(w) >-_ O. First, if Q0 = 0,  then (*) implies 

Q(w) .  U/> - 1  VU ~ 0, 

which happens if and only if Q(w) >'- O. 
Suppose that Qo # 0. Let V >- 0, and choose A > 0 such that AV �9 Qo = 1. 

Then 

(AV) . Q(w) = (AV) . Qo + W T  L(AV)  = 1 + AwT L(V)  >10by (*). 

Therefore, Q ( w )  �9 V >1 0 VV >.- O, implying that w E G,  and hence H ~ C G.  But 
then, 

H = H ~176 D G ~ 

and the proof is complete. [] 

From the lemma, the difference G ~  * is a set of measure zero. It is interesting 
to characterize this set of "missing" points. Our next result is a partial progress in 
this direction. 

THEOREM 2. Let G = {xlQ(x)  >- 0} with Qo ~ O. Then 

G ~ = CI(G*) = G* + Aft(G) • 
Proof Put S -- Aft(G) • and let A be a k • rn matrix with rank k such that 

S = Range(A). Since vTx = 0 for any v 6 S and x E G, 

G* c G* + s c G ~ = CI(G*), 

and hence it suffices to show that G* + S is closed, which is proved by induction 
on n. The base case of n = 1 is trivial. 
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Suppose that - L ( U ( i ) )  + ATA( i )  -+ w for some U(i)  ~ O, U(i)  . Qo <~ l, 
and A(i) E Yt k, i = 1 , . . . ,  c~. We need to show that there exist U _ 0 and A 
such that U �9 Q0 ~< 1 and w = - L ( U )  + ATA. Suppose the contrary. We may 
assume that either U(i)  is unbounded or that A(i) is unbounded, for otherwise, any 
accumulation point of the joint sequence will be the desired [U, A]. Now define the 
normalized sequence 

[~'(i), A(i)] = [U(i), A( i ) ] / (U( i ) .  I + IIA(i)II) Vi, 

and assume, by passing to a subsequence if necessary, that the sequence converges 
to (U-, A). Note the following. 

�9 At least one of gr or ,~ is nonzero. 
�9 - L ( U )  + ATA = l i m w / ( U ( i ) .  I + IIA(i)II) = O. 

�9 In fact, ~r r O. This can be seen as follows: if U = O, then ATA = O, which 
by the independence of the rows of A implies that ,~ = O, a contradiction. 

�9 Also, since 0 ~< U(i)  �9 Qo <~ 1 Vi, it follows that ~r. Q0 = o. 
Pick linearly independent vectors x (j) E G, Vj = 1, . . . ,  m -  k, and so A x  ( j)  = 

0 V j ,  implying that 

x ( j )TL(~] )  = x ( j ) T ( - L ( U )  + ATA) = 0 V j  = 1 , . . . ,  m - k 

and hence Q ( x ( j ) )  �9 U --- 0 Vj. Now we employ the following fact (In [2], it is 
used to derive a complementary slackness result for SDP): 

A , B  >- O , A .  B = 0 : ,  A B  = O. 

By applying the above, we get that UQ0 = 0 = Q0~r, and also 

Q ( x ( j ) ) U  = grQ(x( j ) )  = o Vj  = 1 , . . . , m -  k 

which implies that 

Qtg r = grQt = 0 Vl = 1, . . . , m.  

This is so, since otherwise, we will have a nonzero solution v to the system 
v Tx  (j) = 0 V j ,  contradicting the independence of the x (j). 

Now, to complete the final part of the proof, we will first assume that 

~r = In, @ On-w for some n' > O. 

It follows that the Qt are of the form: [o0] 
Pz= vi. 

By the induction hypothesis, lemma holds for ~)(x), and this is easily seen to 
imply the same for Q(x). Since the nonzero PSD matrix f) can always be brought 
in to the above form by an orthogonal transformation, the Theorem follows. [] 

We conjecture the following improvement of the theorem. 
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CONJECTURE 1. 

G ~ -- G* U Aft(G) • 

The theorem implies that when G has nonempty interior, then G* = G ~ It also 
shows that for any matrix map, there exists a "rectified" map (one choice being 
Q(x) | Diag(Ax) @ Diag ( -Ax) )  that gives the same spectrahedron, but its alge- 
braic and geometric polars coincide. 

3.1. COMPARISONS WITH POLYHEDRA 

Let us collect the following properties of polyhedra, and inquire whether they 
extend to spectrahedra. 

1. Faces are exposed 
2. Closed under intersections 
3. Dimensions of the faces form a contiguous string 
4. Closed under linear maps 
5. Closed under projections and Minkowski sums 
6. Closed under polar taking 

As we have seen, properties 1 and 2 extend to spectrahedra, and 3 does not. To 
see that 4 fails for spectrahedra, let us return to the example given before Lemma 
4, and note that G* = {(Ull,2U12)[U E 502}. Since G* is not closed, it is not 
spectrahedral. Also, G* is the projection of 502 onto the subspace {U E SnIU22 = 

0}, and hence projections need not preserve spectrahedrality. We now give an 
example of two bounded spectrahedra, whose sum is not spectrahedral. Consider 
the following spectrahedra in 9~2: 

C =  {x I [[x[[~o ~<2} a n d B =  {x [ [Ixll2 ~< 1}. 

The sum C + B is a square with rounded comers. Pick any of the eight points on 
this set where a circular boundary meets a straight line, say (3, 2). It is easy to see 
that this point is an unexposed extreme point. Since the faces of spectrahedra must 
be exposed, it follows that C + B is not a spectrahedron. 

A slight modification of the above example shows that the polars of spectrahe- 
dral cones are not necessarily spectrahedrah Let C be the Ice Cream Cone in ~3, 

i.e. C = {x[x3/> V ~ I  + x2} �9 Note that C = {x[Q(x) >'- 0}, where 

Q ( x ) =  x2 0 . 

x3 0 xl 

Let K denote the spectrahedral cone - ( C  N 9~_), and observe that K ~ = 6" + ~ _ .  
Clearly, 

C - ' } - ~ 3  = CI..J { x [ x  3 ) O, x2"-l-x3 >/O, ac 1 - [ -x  3 > / O , x  3 - x 1 - x 2 ) 0} ,  
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and the plane x2 -4- x3 is tangential  to C at (0, - 1 ,  1). It is not  difficult to show that 

the ray  genera ted  by  this vector  is an unexposed  ext reme ray, imply ing  that K ~ is 

not  spectrahedral .  
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Note 

i The arithmetic complexity of their overall algorithm is polynomial. Unfortunately, neither the 
authors establish an explicit polynomial bound for the bitlengths of the intermediate numbers, nor 
does such a bound follow trivially from other results in the literature. 
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